Exam. Code 211001
 Subject Code
 3836

M.Sc. Mathematics Ist Semester MATH-553 ALGEBRA-I

Time Allowed- 3 Hours]
[Maximum Marks-100
Note :- Candidates are required to attempt five questions, selecting at least one question from each Section. The fifth question may be attempted from any Section.

SECTION-A

1. (a) Let H and K be two subgroups of a group G . Then HK is subgroup of G if and only if $\mathrm{HK}=\mathrm{KH}$. 6
(b) The intersection of two subgroups of finite index is of finite index.
(c) State and prove Lagrange's theorem and prove that for every $\mathrm{a} \in \mathrm{G}, \mathrm{o}(\mathrm{a}) \mid \mathrm{n}$, where n is order of G .
2. (a) Every cyclic group is isomorphic to \mathbb{Z} or to $\frac{\mathrm{Z}}{\langle\mathrm{n}\rangle}$ for some $n \in \mathbb{N}$.
(b) Give an example of a group G having subgroups K and T such that K is normal in T and T is normal in G but K is not a normal subgroup of G .

a2zpapers.com

(c) Prove that a non-abelian group of order 6 is isomorphic to S_{3}.

10

SECTION-B

3. (a) Show that each dihedral group is homomorphic to the group of order 2 . 5
(b) Find $\operatorname{Aut}(\mathrm{K})$ where K is the Klein four-group. 5
(c) If a permutation $\sigma \in \mathrm{S}_{\mathrm{n}}$ is a product of r transpositions and also a product of s transpositions, then r and s are either both even or both odd. 10
4. (a) Show that A_{n} is simple for all $\mathrm{n} \geq 5$.
(b) Show that the group \mathbb{Z}_{8} cannot be written as the direct sum of two nontrivial subgroups.
(c) Prove that there is a 1-1 correspondence between the family F of nonisomorphic abelian groups of order $\mathrm{p}^{\mathrm{e}}, \mathrm{p}$ prime and the set $\mathrm{P}(\mathrm{e})$ of partitions of e .5

SECTION-C

5. (a) Let G be a group containing an element of finite order $\mathrm{n}>1$ and exactly two conjugacy classes. Prove that $|\mathrm{G}|=2$.
(b) State and prove Jordan-Holder theorem. 7
(c) Let G be a group of order 108. Show that there exist a normal subgroup of order 27 or 9 . 6
6. (a) State and prove Sylow's second theorem. 7

4241(2118)/DAG-12427 2
(b) Let G be a finite group of order p^{n}, where p is prime and $\mathrm{n}>0$. Then prove that $\mathrm{Z} \cap \mathrm{N}$ is nontrivial for any nontrivial normal subgroup N of G .
(c) Show that a simple group is solvable if and only if it is cyclic.

SECTION-D

7. (a) Find all ideals in \mathbb{Z} and also in \mathbb{Z}_{10}.
(b) If R is a ring with unity, then each maximal ideal is prime. Is converse true ? Justify.
(c) Let F be a field. Then characteristic of F is either 0 or a prime number p .
(d) Define idempotent and find the idempotents of ring Z_{12}.
8. (a) Show that there exist a ring homomorphism $\mathrm{f}: \mathbb{Z}_{\mathrm{m}} \rightarrow \mathbb{Z}_{\mathrm{n}}$ if and only if $\mathrm{n} \mid \mathrm{m}$.
(b) Prove that the ideal $\left.<\mathrm{x}^{3}+\mathrm{x}+1\right\rangle$ in the polynomial ring $Z_{2}[x]$ over \mathbb{Z}_{2} is a prime ideal.
(c) Define integral domain and show that a finite integral domain is a division ring.
